Enhancing and verification of dose in external radiation therapy using Gd nanoparticles as a theranostic agent: A Monte Carlo simulation study
Authors
Abstract:
Introduction: Theranostics, in particular, the use of radionuclides with the capability of simultaneous imaging and treatment has opened new horizons in personalized treatment planning of targeted radiation therapy. In this approach, positive beta or gamma emitters are required for imaging and alpha, beta and Auger electrons for treatment purpose. On the other hand, studies have shown that due to high biological effectiveness the combination of external radiation modalities such as neutrons and protons with internal radiation modalities, can have a potential impact on cancer cell killing. Therefore, given the advances made in nanoparticles and radiopharmaceuticals, the necessity of designing combined therapy modalities and radiopharmaceuticals with a diagnostic-therapeutic capability is of particular importance, and Monte Carlo computational methods are a powerful tool in this regard. Materials and Methods: In this study, by using the Geant4 and MCNPX Monte Carlo Codes, the absorbed dose of the Auger electrons, KERMA and the flux of the prompt gamma photons was calculated. the distribution of gadolinium nanoparticles with different concentrations and also without them, in two geometries of uniform PMMA environments surrounded by water and the cell model, was subjected to neutron irradiation and the dose was measured in macroscopic and microscopic conditions. Regarding the higher energy range compared to the diagnostic items in nuclear medicine, a gamma camera was optimized for counting the prompt gamma photons by using the F4 and F2 flux calculations as well as count calculation F1 MCNP tallies Results: Dose enhancement was observed in micro and macro dosimetry conditions. For example, the amount of dose in the cellular model assigned to the nucleus was 5.1 E-5 Gy, 3.01E-03 Gy, and 4.05E-7 Gy for the distribution of Gd in the core, total nucleus, and cytoplasm for particle history, respectively. There was also a direct correlation between the number of prompt gamma rays and the nanoparticle concentration Conclusion: Labeling of antibodies or peptides with gadolinium nanoparticles in the presence of external radiation beam can be used as a marker for drug distribution, as well as targeted radiation therapy theranostic agent because of enhancement of doses due to auger electrons and prompt gamma photons with imaging capability that showing the synergy impact of diagnostic imaging and therapeutics.
similar resources
A Monte Carlo simulation and dosimetric verification of physical wedges used in radiation therapy
Background: The presence of a wedge filter in the beam trajectory can modify the beam quality and cause some changes in the dosimetry parameters which are usually difficult to be measured directly and accurately. Material and Methods: In this study the MCNP-4C Monte Carlo code was used to simulate the 9 MV photon beam generated by a linear accelerator. Upon getting a good agreement bet...
full texta monte carlo simulation and dosimetric verification of physical wedges used in radiation therapy
background: the presence of a wedge filter in the beam trajectory can modify the beam quality and cause some changes in the dosimetry parameters which are usually difficult to be measured directly and accurately. material and methods: in this study the mcnp-4c monte carlo code was used to simulate the 9 mv photon beam generated by a linear accelerator. upon getting a good agreement between the ...
full textSize Effects of Gold and Iron Nanoparticles on Radiation Dose Enhancement in Brachytherapy and Teletherapy: A Monte Carlo Study
Introduction In this study, we aimed to calculate dose enhancement factor (DEF) for gold (Au) and iron (Fe) nanoparticles (NPs) in brachytherapy and teletherapy, using Monte Carlo (MC) method. Materials and Methods In this study, a new algorithm was introduced to calculate dose enhancement by AuNPs and FeNPs for Iridium-192 (Ir-192) brachytherapy and Cobalt-60 (Co-60) teletherapy sources, using...
full texta study on rate making and required reserves determination in reinsurance market: a simulation
reinsurance is widely recognized as an important instrument in the capital management of an insurance company as well as its risk management tool. this thesis is intended to determine premium rates for different types of reinsurance policies. also, given the fact that the reinsurance coverage of every company depends upon its reserves, so different types of reserves and the method of their calc...
A comparison of arrived dose to the heart in the treatment of breast cancer in different modes of proton radiation by proton therapy using Monte Carlo simulation
Introdution: Today, the Advantages of radiation therapy by charged particles is indicated for the treatment of cancerous. During the passing of proton beam in the body tissues, secondary particles produce, which penetrate to the body healthy tissues and cause damage. The aim of this research was calculating the Spread out Bragg Peak for covering the breast cancer and investigating arrived dose ...
full textA Monte Carlo simulation study on the effectiveness of electron filters designed for telecobalt radiation therapy treatment
Background: The aim of present study was to analyze the effectiveness of electron filters in the Telecobalt radiotherapy treatment by simulation technique. Materials and Methods: The BEAMnrc Monte Carlo code was used to simulate the electron filters of thickness of 0.5 gm/cm2 below the trimmer bar for 35 × 35 cm2 field size in Theratron Equinox-80 telecobalt unit. The electron filters were mad...
full textMy Resources
Journal title
volume 15 issue Special Issue-12th. Iranian Congress of Medical Physics
pages 119- 119
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023